关于
我的项目
相关阅读
热度排行
- [转] 宫崎骏用动漫教给我们的人生哲理,每一句都能说到心里! - (日期:[八月 24, 2013] 点击:[53,222])
- Google 网页爬虫报告无法连接站点解决办法 - (日期:[七月 20, 2014] 点击:[38,641])
- 架设Tiny Tiny RSS(TTRSS)阅读器,找回Google Reader! - (日期:[九月 27, 2013] 点击:[27,769])
- SkyDrive、DropBox和Google Drive三大公有云存储服务对比 - (日期:[六月 25, 2013] 点击:[25,574])
- 升级到至强E5440后,与i5 CPU笔记本性能对比 - (日期:[二月 18, 2014] 点击:[23,713])
- 公钥私钥加密解密数字证书数字签名详解 - (日期:[四月 19, 2014] 点击:[22,959])
- 本站建站技术合集 - (日期:[九月 20, 2013] 点击:[22,490])
- 使用OpenerDNS解决无法访问Google的问题 - (日期:[七月 5, 2014] 点击:[21,789])
- WordPress博客添加“返回顶部”按钮 - (日期:[七月 14, 2013] 点击:[21,203])
- Linux文件系统基础之inode和dentry - (日期:[三月 13, 2015] 点击:[20,167])
- 云存储中的HTTP鉴权算法分析 - (日期:[二月 7, 2014] 点击:[18,639])
- 存储基础知识之——磁盘阵列原理及操作实战 - (日期:[二月 9, 2014] 点击:[17,492])
- 精选37条强大的常用linux shell命令组合 - (日期:[九月 4, 2013] 点击:[17,429])
- DNS原理、架构和配置详解 - (日期:[九月 6, 2013] 点击:[16,803])
- Netty和Jetty的Java NIO 网络框架模型分析 - (日期:[七月 13, 2013] 点击:[16,333])
- CoreOS 初识之安装 - (日期:[十一月 16, 2014] 点击:[16,170])
- Windows与Linux文件系统互访的几种方法 - (日期:[八月 21, 2014] 点击:[15,733])
- Dijkstra算法求解最短路径分析 - (日期:[七月 12, 2014] 点击:[14,924])
- NAS解决方案实现多媒体文件共享播放 - (日期:[十二月 21, 2014] 点击:[13,915])
- 简介 - (日期:[九月 1, 2012] 点击:[13,757])
- 如何编程实现 2 + 2 = 5? - (日期:[六月 2, 2014] 点击:[13,269])
- 搭建了一个iNews程序 - (日期:[十月 15, 2013] 点击:[13,236])
- 2014年9月曝出的Bash ShellShock漏洞简析 - (日期:[九月 26, 2014] 点击:[13,138])
- 彻底解决WordPress博客垃圾评论的问题 - (日期:[八月 5, 2013] 点击:[13,086])
- 如何使用1M的内存排序100万个8位数 - (日期:[三月 27, 2014] 点击:[12,552])
- 全部日志列表 - (日期:[十一月 11, 2012] 点击:[12,328])
- 关于回调函数和this指针探讨 - (日期:[八月 24, 2014] 点击:[12,209])
- 给定一个long型常量,其值为x,给定long型变量a,要求a & x 的取值集合 - (日期:[九月 8, 2012] 点击:[11,703])
- WordPress建站必备实用插件 - (日期:[八月 7, 2014] 点击:[11,360])
- Amazon 云计算业务全面介绍 - (日期:[三月 9, 2014] 点击:[11,268])
分类目录
文章归档
- 2024年四月 (1)
- 2024年二月 (1)
- 2023年九月 (1)
- 2023年一月 (1)
- 2022年十月 (1)
- 2022年八月 (2)
- 2022年四月 (1)
- 2022年三月 (1)
- 2021年十二月 (2)
- 2021年十月 (2)
- 2021年九月 (1)
- 2021年八月 (1)
- 2021年五月 (1)
- 2021年三月 (2)
- 2021年一月 (2)
- 2020年十二月 (5)
- 2020年十一月 (2)
- 2020年十月 (2)
- 2020年九月 (1)
- 2020年八月 (5)
- 2020年七月 (2)
- 2019年九月 (1)
- 2018年八月 (1)
- 2018年七月 (1)
- 2018年六月 (1)
- 2018年五月 (1)
- 2018年三月 (1)
- 2018年二月 (1)
- 2018年一月 (2)
- 2017年十二月 (3)
- 2017年十月 (4)
- 2017年九月 (1)
- 2017年七月 (1)
- 2017年六月 (1)
- 2016年十二月 (1)
- 2016年十月 (1)
- 2016年九月 (1)
- 2016年七月 (2)
- 2016年六月 (1)
- 2016年二月 (3)
- 2015年十二月 (3)
- 2015年十一月 (2)
- 2015年十月 (1)
- 2015年八月 (2)
- 2015年七月 (4)
- 2015年六月 (1)
- 2015年三月 (2)
- 2015年二月 (1)
- 2015年一月 (4)
- 2014年十二月 (2)
- 2014年十一月 (2)
- 2014年十月 (5)
- 2014年九月 (8)
- 2014年八月 (11)
- 2014年七月 (17)
- 2014年六月 (7)
- 2014年五月 (15)
- 2014年四月 (16)
- 2014年三月 (14)
- 2014年二月 (5)
- 2013年十二月 (5)
- 2013年十一月 (3)
- 2013年十月 (13)
- 2013年九月 (13)
- 2013年八月 (13)
- 2013年七月 (9)
- 2013年六月 (8)
- 2013年五月 (1)
- 2013年三月 (3)
- 2013年一月 (1)
- 2012年十一月 (1)
- 2012年九月 (12)
- 2012年八月 (3)
- 2011年二月 (1)
- 2009年三月 (1)
- 2009年二月 (1)
- 2008年十一月 (1)
- 2008年六月 (1)
- 2008年四月 (1)
- 2008年三月 (1)
写Java也得了解CPU缓存
CPU,一般认为写C/C++的才需要了解,写高级语言的(Java/C#/pathon…)并不需要了解那么底层的东西。我一开始也是这么想的,但直到碰到LMAX的Disruptor,以及马丁的博文,才发现写Java的,更加不能忽视CPU。经过一段时间的阅读,希望总结一下自己的阅读后的感悟。本文主要谈谈CPU缓存对Java编程的影响,不涉及具体CPU缓存的机制和实现。
现代CPU的缓存结构一般分三层,L1,L2和L3。如下图所示:
级别越小的缓存,越接近CPU, 意味着速度越快且容量越少。
L1是最接近CPU的,它容量最小,速度最快,每个核上都有一个L1 Cache(准确地说每个核上有两个L1 Cache, 一个存数据 L1d Cache, 一个存指令 L1i Cache);
L2 Cache 更大一些,例如256K,速度要慢一些,一般情况下每个核上都有一个独立的L2 Cache;
L3 Cache是三级缓存中最大的一级,例如12MB,同时也是最慢的一级,在同一个CPU插槽之间的核共享一个L3 Cache。
当CPU运作时,它首先去L1寻找它所需要的数据,然后去L2,然后去L3。如果三级缓存都没找到它需要的数据,则从内存里获取数据。寻找的路径越长,耗时越长。所以如果要非常频繁的获取某些数据,保证这些数据在L1缓存里。这样速度将非常快。下表表示了CPU到各缓存和内存之间的大概速度:
从CPU到 大约需要的CPU周期 大约需要的时间(单位ns)
寄存器 1 cycle
L1 Cache ~3-4 cycles ~0.5-1 ns
L2 Cache ~10-20 cycles ~3-7 ns
L3 Cache ~40-45 cycles ~15 ns
跨槽传输 ~20 ns
内存 ~120-240 cycles ~60-120ns
利用CPU-Z可以查看CPU缓存的信息:
在linux下可以使用下列命令查看proc文件系统或者sys下的设备描述。
有了上面对CPU的大概了解,我们来看看缓存行(Cache line)。缓存,是由缓存行组成的。一般一行缓存行有64字节(由上图”64-byte line size”可知)。所以使用缓存时,并不是一个一个字节使用,而是一行缓存行、一行缓存行这样使用;换句话说,CPU存取缓存都是按照一行,为最小单位操作的。
这意味着,如果没有好好利用缓存行的话,程序可能会遇到性能的问题。可看下面的程序:
public class L1CacheMiss { private static final int RUNS = 10; private static final int DIMENSION_1 = 1024 * 1024; private static final int DIMENSION_2 = 6; private static long[][] longs; public static void main(String[] args) throws Exception { Thread.sleep(10000); longs = new long[DIMENSION_1][]; for (int i = 0; i < DIMENSION_1; i++) { longs[i] = new long[DIMENSION_2]; for (int j = 0; j < DIMENSION_2; j++) { longs[i][j] = 0L; } } System.out.println("starting...."); long sum = 0L; for (int r = 0; r < RUNS; r++) { final long start = System.nanoTime(); //slow // for (int j = 0; j < DIMENSION_2; j++) { // for (int i = 0; i < DIMENSION_1; i++) { // sum += longs[i][j]; // } // } //fast for (int i = 0; i < DIMENSION_1; i++) { for (int j = 0; j < DIMENSION_2; j++) { sum += longs[i][j]; } } System.out.println((System.nanoTime() - start)); } } }
以我所使用的Xeon E3 CPU和64位操作系统和64位JVM为例,如这里所说,假设编译器采用行主序存储数组。
64位系统,Java数组对象头固定占16字节(未证实),而long类型占8个字节。所以16+8*6=64字节,刚好等于一条缓存行的长度:
如32-36行代码所示,每次开始内循环时,从内存抓取的数据块实际上覆盖了longs[i][0]到longs[i][5]的全部数据(刚好64字节)。因此,内循环时所有的数据都在L1缓存可以命中,遍历将非常快。
假如,将32-36行代码注释而用25-29行代码代替,那么将会造成大量的缓存失效。因为每次从内存抓取的都是同行不同列的数据块(如longs[i][0]到longs[i][5]的全部数据),但循环下一个的目标,却是同列不同行(如longs[0][0]下一个是longs[1][0],造成了longs[0][1]-longs[0][5]无法重复利用)。运行时间的差距如下图,单位是微秒(us):
最后,我们都希望需要的数据都在L1缓存里,但事实上经常事与愿违,所以缓存失效 (Cache Miss)是常有的事,也是我们需要避免的事。
一般来说,缓存失效有三种情况:
1. 第一次访问数据, 在cache中根本不存在这条数据, 所以cache miss, 可以通过prefetch解决。
2. cache冲突, 需要通过补齐来解决(伪共享的产生)。
3. cache满, 一般情况下我们需要减少操作的数据大小, 尽量按数据的物理顺序访问数据。
参考:
http://mechanitis.blogspot.hk/2011/07/dissecting-disruptor-why-its-so-fast_22.html
http://coderplay.iteye.com/blog/1485760
http://en.wikipedia.org/wiki/CPU_cache
转载信息:原文地址
2 条评论
在高性能编程中的确有使用的空间,能“极致”地提升代码运行效率,学习了thanks
在高性能变成中的确有使用的空间,能“极致”地提升代码运行效率,学习了thanks